Text S1

Part 1. Details on curve fitting of FRAP data

The EGFP FRAP data can be fitted with a single exponential curve, whereas the actin FRAP data (WT, G13R,
and R62D) can only be fitted accurately with double exponential function. Details are provided below.

Single exponential fit:
Let: F(f)=a- bexp(- z‘ij

1

F(0)=F, and  F(o)=F

e

Thus:  F(1)=F, - (F,- E))exp[- tij

1

For EGFP:  [F, =0.0314; F =09999; f,=1.0444

Double exponential fit:

Let F(t)=a—bexp(—tj—cexp(—tJ

21

F(0)=F, and  F(o)=F

e

Thus: F(t)=F, - (F, - Fo)eXp(_rtlJ_c [exp(—jj—exp[— ;J]

For WT G-actin:  |F, =0.0960; F =0.8797, ¢=0.4161;, f =15112; t,=44.0287
For G13R: F,=0.104%, F =10019; c=04637, t,=14744; t,=69.3191
For R62D: F,=0.1021, F =1.0002; c=04506, t,=15724; t,=70.2468




Part 2.

the inositol lipids PI(4,5)P, and PI(3,4,5)P3

Models for binding competition between G-actin and PH domains for association with

First, we will consider competition models in which either G-actin or a PH domain can form a scaffold with PIP,
(PIP3) but not both. Fig. S6 (A and B) shows four such models: schemes al and a2 (schemes bl and b2)
correspond to interactions between G-actin and PIP; (PIP,), respectively; schemes al and b2 (schemes a2 and
b1) involve binding between PH,: and PIPs (PHp,c and PIP,), respectively. For all schemes, we assume that the
concentrations of unbound G-actin and PH domains are in abundance and quickly equilibrate to a constant
value. However, the expression of PH domain is different between measurements so that in correlation plots
of total G-actin (bound plus unbound) versus total PH (bound plus unbound), the concentration of the
unbound PH is an independent variable.

Chemical equations for the schemes in Fig. S6 (A and B) are given in Table S1 below:

Table S1

Scheme al
PIP,—%—PIP,;
PIP, <« PIP,;

PIP, +G,,
PIP, + G, «—=—{PIP, -G, ;. ]’

PH ,, + PIP,—%[PH ,, - PIR,];
PH ,, +PIP, <% [PH, -PIR,]-

L)[PIPE} : Gaclin] ’

Scheme a2
PIP,—%PIP,;
PIP, «*~—PIP,;
PIP, + G,
PIP, + G, <<2—[PIP, -G, ]’
PH . +PIP,—<>[PH, - PIR,];
PH +PIP,<*=[PH, . -PIP,]-

L)[PIPCS ) Gactin] ’

Scheme b1l
PIP,— > PIP,;
PIP, <+ —PIP,;
PIP, + G, , —<—[PIP,-G,,];
PIP, + G, , «—=—{PIP,-G,;,]7
PH . +PIP,—>[PH, . - PIR,];
PHp +PIP,«*=[PH, . -PIP,]-

Scheme b2
PIP,—~PIP,
PIP, «*+—PIP,;
PIPz +Gactin L)[PIPZ 'Gaain];
PIP, + G, «—=—{PIP,-G,;,]7
PH ,, +PIP,—%[PH . -PIR,];
PH ,, +PIP,«*[PH , -PIR,]-

The corresponding rate laws in steady-state approximation are given in Table S2 below:

Table S2

Scheme al
k, [PIP,]=k., [PIP,]
kfz [P|P3 'Gactin] = kz [P|P3]‘ [Gactin]
k ,[PH . - PIR,]=k, [PH . ]-[PIP,]

Scheme a2
k, [PIR,]=k, [PIP,]
k—z [P|P3 ‘Gactin] = k2 [PIP3] [Gactin]
k-s [PH pPLC * PIPz] = ks [PH PLC ]-[Ple]

Scheme bl
k [PIR,]=k, [PIP,]
k—e [Plpz : Gaclin] = k6 [Plpz] [Gaclin]
k—s [PH PLC PIPz] = ks [PH PLC]' [Ple]

Scheme b2
k [PIR,]=k , [PIP,]
kfe [Ple 'Gaain] = ks [P|P2]~ [Gamin]
k, [PH,, -PIP,]=k, [PH .. ]-[PIP,]

For Scheme al, the conservation of the total concentration of inositol lipids implies:
[PIP]G" = [PIP, ]+ [PIP, ]+ [PIP, -G, 1+ [PH 4, - PIP,].

(1)

The total concentration of fluorescently tagged G, and PH4: measured for the correlation plots:
total

[Gactin] = [Gactin]+ [PIPB ’ Gactin] ,

[PH . ]°*' = [PH o ]+ [PH 5 - PIP,].

Using equations 1-3 and the rate lows in Table S2, we find that
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total
shl
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[Gactin] o = [Gactin] +

actin
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1+kl/k-l +k2 [Gactin]/k-Z +k3 [PHAkt]/k-3 '

[PH, | =[PH ]+

1+kl/k-l +k2 [Gactin]/k-Z +k3 [PHAkt]/k-S .

(2)
(3)

(4)

(5)

(6)

From equations 5 and 6, we can find the rate of change of the measured quantities with respect to the change of the

PH,: concentration:
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Using analogous calculations for Scheme a2, for which
[PIP]SS = [PIP, ]+ [PIP,]+[PIP, -G

[Gactin ]tmal - [ actin ] + [PI P Gactln] ’
[PH PLC ]wtal = [PH PLC ]"‘ [PHpc - PIR,T,

actin

1+[PH - PIR,],

we find that

a [ Gactin
a [ PHPLC ] total
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For Scheme b1l:
[PIP]s = [PIP, ]+ [PIP,]+[PIP, -G, ]+ [PH s - PIP,],

[Gactin]mtal - [ actm]+ [PIP Gactln] ’
[PH PLC ]wtal = [PH PLC ]"‘ [PHp -PIR,],

and

Gl -1

actin — >

total 2 -
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Finally, for Scheme b2:
[PIP]S=! = [PIP, ]+ [PIP,]+[PIP, -G

[Gactin]mtal - [ actm]+[P|P Gactln] ’
[PH . [°® =[PH 4 ]+[PH 5 - PIR,],

1+[PH 4, - PIR],

actin

so that
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Equations (9), (13), (17), and (21) show that, in all four schemes, the slope of the correlation curve [G il \ersus

actin]
[PH]
[Gactin]
(even transiently) a scafold with PIP;. Thus, to achieve an agreement with the experimental measurements, we

total

versus [PHch] but not for

total

total
actin ]

is between —1 and 0, which is consistent with the data for [G

lota

! versus [PHAkt] mmz. This result argues against the original assumption that both G,, and PH4: cannot form

1) rule out schemes bl and b2, i.e., we rule out the direct interaction between G,;, and PIP,, and
2) modify scheme 1a by adding transitions between PIP;-G_,, and PH ,, - PIP, through PH,, -PIP,-G_,, as

shown in Fig. S6 C.

Chemical equations for the schemes in Fig. S6 C are given in Table S3 below:

Table S3

Scheme c1 Scheme c2
PIP,—%—>PIP,; PIP, <« PIP,; PIP,—%>PIP,; PIP,«*—PIP,;
PIP, + G, ;,, —2—[PIP, -G,,] PIP, + G, «~2—{PIP,-G,;.]’ PIP, +G,.;,, —<—[PIP,-G,.]
PH ,, + PIP,—%[PH . - PIR,]; PH , + PIP,«*[PH . -PIR,]; PIP, + G, «—=—[PIP, -G, ;]
PH,, +[PIP, -G, ]—<[PH,, -PIR,-G,,,]»  PH, +[PIP, -G, ]«*—PH ,, -PIP,-G,;.]; PH, +PIP,—5[PH, -PIP,]/
[PH,. -PIR]+G, ,—>[PH . -PIR,-G,;,]7  [PH - PIR]+G,, «*—PH . -PIP,-G,..]- PHp +PIP,«<*=[PH, . -PIP,]-

The corresponding rate laws in steady-state approximation are given in Table S4 below:

Table 4
Scheme cl1 Scheme c2
k1 [Plps]: kfl [Plpz] kl [P|P3]: kfl [PIPZ]
K.y [PIP, -G ] +K s [PH e - PIR] =k, [PIR,]-[Goiyo ]+ K, [PH . ]-[PIR.] K, [PIR,-Gyoiu] =k, [PIR] G
k-z [P|P3 'Gaain]+k7 [PHAkz]'[Plps 'Gaczin] = kz [PIP:s][ actin]+k—7 [PHAkt ' PIPs 'Gactin] k-s [PH pPLC Plpz] = ks [PH PLC ]'[Plpz]
K3 [PH - PIP] 4K, [PIP, - PH 1[G ] = ks [PH - [PIP, [+ K g [PH s - PIP, -G

Using symbolic solver (in MATLAB and Mathematica) for the equations in Table S4, we find the explicit expressions for
[G ]total and [PH

actin PLC]
data (Fig. 5, C and D; and Fig. S6 E).

" With these solutions, we use the MATLAB least square optimization to fit the correlation



